问题2482--选数

2482: 选数

[命题人 : ]
时间限制 : 1 sec  内存限制 : 128 MB

提交

题目描述

已知 $n$ 个整数 $x_1,x_2,\cdots,x_n$,以及 $1$ 个整数 $k$($k<n$)。从 $n$ 个整数中任选 $k$ 个整数相加,可分别得到一系列的和。例如当 $n=4$,$k=3$,$4$ 个整数分别为 $3,7,12,19$ 时,可得全部的组合与它们的和为:

 

$3+7+12=22$

 

$3+7+19=29$

 

$7+12+19=38$

 

$3+12+19=34$

 

现在,要求你计算出和为素数共有多少种。

 

例如上例,只有一种的和为素数:$3+7+19=29$。

输入

第一行两个空格隔开的整数 $n,k$($1 \le n \le 20$,$k<n$)。

 

第二行 $n$ 个整数,分别为 $x_1,x_2,\cdots,x_n$($1 \le x_i \le 5\times 10^6$)。

输出

输出一个整数,表示种类数。

样例输入 Copy

4 3
3 7 12 19

样例输出 Copy

1